Physical Computing for Hopfield Networks on a
Reconfigurable Analog IC

Pranav O. Mathews and Jennifer O. Hasler
Department of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, Georgia 30332
Email: jennifer.hasler@ece.gatech.edu

Abstract—This paper discusses physical computing for solving
optimization problems using a Hopfield network built on a
Field Programmable Analog Array (FPAA). A core Hopfield
circuit is presented that uses a programmable Vector-Matrix-
Multiply (VMM) and Transconductance Amplifier (TA). The
circuit dynamics of the VMM and effects of mismatch are
discussed. The analog Hopfield network is evaluated by inputting
a graph to the network and solving the NP-hard max-cut
problem. Experimental results show convergence time in the
order of microseconds towards a optimal solution on a four and
ten node graph.

Index Terms—FPAA, Hopfield, Floating-Gate, Max-Cut

I. ENERGY SURFACE MINIMIZATION

Energy surface minimization is a technique which can be
used to solve difficult problems that conventional computing
algorithms struggle with [1]. Problem metrics are assigned
an energy, and a solution is reached by discovering network
parameters that minimize said energy. One example of this is
a standard neural network classifier, which forms an energy
surface referred to as a “cost function” and minimizes it
through gradient descent and backpropogation.

Methods of representing a problem on an energy surface
can vary. Some early models connect to Ising’s model of
magnetism [2] which then inspired Hopfield’s networks [3]-
[6], and other Ising network implementations [8], [9]. The
parameters of these networks form an energy surface that is
automatically minimized through network dynamics. When
applied to difficult problems such as NP-hard tasks both
Hopfield and Ising networks provide good solutions most to
all of the time, and can even solve the task optimally [5], [6].

Analog computing allows for efficient processing of com-
plex processes by recreating dynamical equations in a physical
setting. Traditionally Hopfield networks have been expressed
in this space, even present in class laboratory experiments. By
building cost minimization structures in an analog setting, one
can realize efficient solutions to difficult problems.

This work presents an analog computing framework for
Hopfield networks. The circuit is built and tested on a re-
configurable analog substrate, the Field Programmable Analog
Array (FPAA) [11]-[15]. The core circuit and its relation
to Hopfield network dynamics are discussed in Section II.
Circuit and calibration details are discussed in Section III, and
experimental results of an analog Hopfield network solving the
NP-hard max-cut problem are presented in Section IV. Finally,

2]
)

@]
e
>
>

Hopfield Network

e

AB

e

AB| |CAB| [CAl

=

Q
=

AB Al Al

AB CAl

=

a a

>

@

a a o o
> >

& & & =

¢}

AB CAB

(e} e e
==} =

A

>

=

P

@]
=2

S

Fig. 1. This work aims to construct a Hopfield network on the SoC FPAA
[14] to solve difficult problems through energy surface minimization. Hopfield
neurons are mapped to programmable analog blocks and routed together to
form a larger network.

Section V contains concluding thoughts and discussions on
future research directions.

II. ANALOG HOPFIELD NETWORK

A Hopfield network consists of multiple neurons wired
together in an all-to-all configuration, or in other words a fully
connected graph. Each of these neurons has some output state
S; which gets multiplied by a weight W;; to form an output
between neurons O;;. S; is set by comparing the weighted
sum of its inputs to a thresholding function:

s 1 0527
0, Zjoji<T

where T is some threshold value.

One can implement this structure on existing SoC FPAA
devices [11]-[15] as shown in Figure 2; this work uses the
FPAA described in [14]. The FPAA enables a mixed signal and
analog computing platform due to the flexibility of its routing
fabric and analog components. Analog computing elements
are located in Computational Analog Blocks (CABs), giving
access to devices such as Transconductance Amplifiers (TAs),
current mirrors, NFET, and PFET devices among others.
Routing locally within a CAB and globally between CABs
is implemented with programmable floating gate (FG) PFET
switches that can also be used for analog computation.

(D

ml m n

B
4:%' Hﬁ
ff Hﬁ

R 7.

V»u/Al

4%45 L

+c+§

I

L

H2 H2

Fig. 2. a) Circuit schematic of a two node Hopfield network block. A VMM made of reconfigurable floating gate (FG) PFET devices with biases makes
up the inputs. An TA compares positive and negative weighted inputs, amplifying the difference by a programmed gain. This gain is made high so that a
small difference causes a large output swing between Gnd and Vdd. b) Schematic of the input VMM portion of the Hopfield circuit. Input voltages come
in through the source of a PFET and get weighted by a charge programmed at the gate. This weighted current then gets converted to a voltage through the
PFET connected to Gnd. ¢) Block diagram of a six node Hopfield network made of three two node blocks wired together. Each two node circuit as shown
in (a) fits into one block of the FPAA; this block diagram represents three of these units wired together to form a larger six node network.

The threshold function of a Hopfield neuron can be imple-
mented by an TA programmed to have a high gain. Negative
weighted inputs get sent to the negative row, and positive
inputs to the positive row. A difference in voltage between
the two rows leads to an almost binary output similar to that
of a Hopfield network threshold

0, V,>V_
Vdd, V.<V_

A Vector Matrix Multiply (VMM) created with floating
gate (FG) PFETs is used to emulate the weighted inputs of
a Hopfield network in the analog circuit as shown in Figure
2a and 2b. Each PFET takes a voltage input at its source and
converts it to a current weighted by the gate voltage, which
is then added together with all other currents according to
KCL. The PFET gate voltage can also “turn off” the transistor,
allowing flexibility in choosing between positive and negative
weights.

Vout = (2)

III. VMM OPERATION AND CALIBRATION

FG devices allow for charge to be tunneled onto the transis-
tor gate, and are used to enable programmable gate voltages.
The current through a FG PFET in subthreshold is given by

I = Ithefi((vdd—Vfg—VTo)—(Vdd—Vs)-‘rU(Vdd—Vd))/UT 3)

where Vy, accounts for capacitive coupling of the control
gate input and charge programmed onto the floating gate.

C

Ly, + Cov
Cr % Crp
Assuming a steady Vy, C7 >> C,, and o = 0, (3) can be

rewritten to clearly show how a FG PFET transistor weights a

Vig = —ZVy+ Vo “4)

AV, = 16.7mV

1.87

© AV = 1.4mV
1.86
[e]
1.85 (o]
o

1.84 F Before Calibration
<1.83 ° o
> e o
< o o (o]
=
St %5 oo

000000000000080

o
o 1 9

After Calibration

o0
1511900006060 00

1.79

178 I I I I
5 10 15 20

VMM Inputs

Fig. 3. Before and after calibration of input FG PFETs in a VMM. Mismatch
variation in V4, is reduced by an average of 15.3 mV after a few calibration
steps, equalizing the strength of weighted inputs to a Hopfield neuron.

current according to the programmed floating gate charge and
source voltage input

I=eVo/Ur y oVs/Ur o [0 =W x Xy x Iy (5)
where

Ip= Ithe“((vdd 1 Vg—=Vro)—=Vaa/Ur (6)

When these devices are connected together, KCL adds up
all the weighted currents to create a VMM.

a) State 1 State 2 b)
2.5 25 ¢
4
2r 2t
L External
— r ~ L5
>z 13 Z Input
o 5
=) e
8]
° o
> 1k > 1F
05 k 05
|
I ot L ‘ ‘ ‘
-1 -0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -5 0 5 10 15

Time (s)

Time (us)

Fig. 4. Experimental data of a four node Hopfield network implemented on the FPAA solving a max-cut problem. a) Two stable max-cut solutions of the
input graph. By perturbing external inputs at ¢t = 0, the network switched between the two correct steady state solutions. These solutions are exact inverses
of each other but represent the same partition of the input graph. b) Time domain plot of a four node Hopfield network converging from a forced unstable
state to a stable state in the order of microseconds. Response time is limited by the slew of the TAs used to compare positive and negative weighted sums.

A. Current to Voltage Translation

If we want a voltage to voltage system the weighted current
output of the VMM needs to go through a current to voltage
transformer. A simple implementation is to use another PFET
connected to ground, creating a source follower like structure
where the “input” is steady and the VMM modifies the bias
current as shown in Figure 2b.

If we assume that inputs to the VMM are binary (Gnd or
Vdd) and that every transistor is identical we can then write
Vout according to KCL:

[vbias + €Vdd/UT[0 Z W" = dgbias + IO Z Wm (7)
Assuming that Ignd pias >> I and Ivaapias << Ip.

Wn
Vout = Vaqa + Urln (Zﬁfg)) ®)

for N inputs at Vdd.

B. Mismatch and Calibration

Previously we assumed that each transistor was identical.
In general this is not true, process variations and slight
programming offsets result in an effective shift of V};, for each
transistor. This variation can be calibrated out of a VMM by
adjusting the programmed V; to compensate for a shifted V;y,.

A source follower structure can be used to find a AV{, that
is needed to reach a reference V,,; [16]. Calculating AV for
all transistors allows an effective V};, match across different
devices. Using (8) we can find that

A‘/out = Vout,ref —Vout = _KAVQ 9)

The Hopfield network VMM uses three kinds of FG PFETs:
Inputs, Vdd bias, and Gnd bias. Mismatch in any one of these
affects V,,,;. Instead of calibrating all three types individually
to a standard reference we can calculate AV for only the
input FETs using its unique Vdd and Gnd biases as a reference,
essentially adjusting for all three sources of mismatch at once
as shown in Figure 3.

Using (9) and stepping one input of the VMM to Vdd at
a time allows us to find a AV for each input transistor, ad-
justing for mismatch in the row. In this experiment a Digilent
Analog Discovery was used both for stepping and measuring
voltages, however any power supply and voltage measurement
tool would suffice. Additionally the FPAA contains onboard
DACs and ADCs, so this could be done entirely on chip as
shown in [16].

We have assumed that x is the same across all transistors,
but this isn’t generally correct and combined with slight
programming variations gives some error from the ideal AVj.
To adjust for this the calibration procedure can be repeated so
that V,,; converges tightly to variations of a few millivolts
across inputs, minimizing the mismatch effect on calibration.

IV. MAX-CUT ON AN ANALOG HOPFIELD NETWORK

The max-cut problem is one of the NP-hard class of tasks
that can be solved through energy surface optimization. If
there is some graph with edges, E, and vertices, V, that is
then divided into two sets the maximum cut is the partition
that contains the largest amount of edges between the sets.
A bipartite graph is an example of the most extreme possible
solution, where every edge goes between the two sets. These
edges can be weighted or unweighted, and a solution is
evaluated by taking the tTAl cost of all edges between the
two sets.

A max-cut problem can be mapped to a Hopfield network by
setting weights depending on if an edge between two vertices
in the problem graph exists,

-W, Eij CFE

Wi, = (10)
+W, Ei; ¢ E

where W is some weight constant [17], [18]. In the case of
this analog Hopfield network W is a voltage programmed onto
the gate of the FG transistors in the VMM between neurons 7
and j. Vertices are considered in the same set if they have the
same state after the network has settled. Setting the weights in
this way encourages vertices sharing an edge to be in different
sets, which is what we want to find the maximum cut.

A max-cut problem was built on an FPAA and programmed
onto a four and ten node Hopfield network; solutions are
shown in Figure 4 and Figure 5. W was set to ten nanoamps
and calibrated onto VMMs as discussed in Section III. One
CAB in the FPAA contains two regular TAs as shown in
Figure 2, so the four node network took up two CABs worth
of area while the ten node network took up five. Each CAB
has thirteen input lines so the theoretical maximum size with
the presented design is a fifteen node network on the FPAA,
however the remaining lines were left free for external inputs
in this paper.

There are two equivalently correct optimal solutions for
any max-cut problem programmed to a Hopfield network:
a solution state and its inverse. Figure 4a shows the net-
work switching between the two correct states of a graph
programmed onto a four node network through an external
input perturbation. The optimal state settled with a small
convergence delay after programming.

To study this convergence time an incorrect initial condition
was set using external inputs and then released as shown in
Fig 4b and Fig 5 for both the four and ten node networks. The
correct solution is reached after around thirteen microseconds
in the four node network and thirty microseconds for the ten
node. This delay is due to the TA gain not being infinite: it
takes some time for the difference in V. and V_ to register
at the output. Additionally, to prevent networks settling with
every node at zero, the Vdd bias transistor on the positive
row was set slightly higher than the negative row. This causes
nodes to initially move towards a high output if all inputs are
zero, which is seen happening to nodes three, seven, nine, and
ten in Fig 5 before network dynamics push them back down.

V. SUMMARY AND DISCUSSION

In this paper we have presented an analog computing struc-
ture for solving optimization problems based on the Hopfield
Network. The circuit was built on a programmable FPAA, and
experimental results demonstrated a correct solution for the
max-cut problem on both a four and ten node network. Both
networks reached an optimal solution in microseconds.

Future work will build upon the base Hopfield circuit to
adjust for TA slew, build larger VMMs, and improve the
general design. Larger networks will be tiled together and
programmed to test how well this design scales, and detailed

2.5 ’__\q

External
Input

n
T

e

O

)

]

s [

05 F VAR

Py S S— ‘ ‘ ‘ ‘ ‘
-5 0 5 10 15 20 25 30

Time (us)

Fig. 5. Time domain plot of a ten node Hopfield network converging from a
forced unstable state to a stable state in the order of microseconds. Response
time is limited by the slew of the TAs used to compare positive and negative
weighted sums. Additional dynamics appear on the nodes that converge to a
low output due to an increased bias on the positive row of each node. The
asymmetry is set to ensure the network does not settle at a state where every
output is Gnd, and initially affects all neurons before network dynamics force
the output back low, increasing convergence time.

energy measurements will be taken to show efficiency gains
from this analog computing implementation.

Ising networks are derived from the same physical phenom-
ena that inspired Hopfield networks, and have very similar
behavior in that they also minimize the same energy surface
as a Hopfield network and can be used to equivalently solve
complex problems. However it is debated which implemen-
tation, Hopfield or Ising, can be more efficient. Future work
will investigate this question by implementing an Ising net-
work alongside the Hopfield network proposed in this work,
allowing for an equal comparison in the same programmable
analog substrate.

REFERENCES

[1] LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, M, and Huang,
F. A tutorial on energy-based learning. Predicting structured data, 1:0,
2006.

[2] S.K. Vadlamania, T. P. Xiaob, and E. Yablonovitch, “Physics success-
fully implements Lagrange multiplier optimization,” PNAS, pp. 1-12

[3] R. Rojas, “The Hopfield Model,” Chapter 13, Neural Networks,
Springer-Verlag, Berlin, 1996.

[4] J.J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of NationalAcademy of
Science, vol. 79, 1982, pp. 2554.

[51 J. Hopfield, “Neurons with graded responses have collective compu-
tational properties like those of two-state neurons,” Proceedings of
NationalAcademy of Science, vol. 81, 1984, pp. 3088-3092.

[6] J.J. Hopfield, D.W. Tank, Neural computation of decisions in optimiza-
tion problems, Biological Cybernetics, vol. 52, 1985, pp. 141-152.

[7] J. Hopfield and D. Tank, “Computing with neural circuits: a model,”
Science, vol. 233, no. 4764, 1986. pp. 625-633.

[8] “Oscillator-based Ising Machine,” T. Wang and J. Roychowdhury

[9] OIM: Oscillator-based Ising machines for solving combinatorial optimi-
sation problems,” T. Wang and J. Roychowdhury

[10] J. Chou, S. Bramhavar, S. Ghosh, W. Herzog, “Analog coupled oscillator
based weighted Ising machine,” Scientific Reports, Nature Research, vol.
9, October 2019.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

B. Rumberg and D. W. Graham, “A low-power field-programmable
analog array for wireless sensing,” in Proc. ISQED, Mar. 2015, pp.
542-546

G. E. R. Cowan, R. C. Melville, and Y. P. Tsividis, “A VLSI analog
computer/digital computer accelerator,” IEEE J. Solid-State Circuits, vol.
41, no. 1, pp. 42-53, Jan. 2006.

“A continuous-time field programmable analog array (FPAA) consisting
of digitally reconfigurable GM-cells,” in Proc. ISCAS, May 2004, pp.
1.1092-1.1095.

S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R, Wunderlich,
S. Nease, and S. Ramakrishnan, “A programmable and configurable
mixed-mode FPAA SoC,” IEEE Transactions on VLSI, vol. 24, no. 6,
2016, pp. 2253-2261.

J. Hasler, “Large-scale field programmable analog arrays,” IEEE Pro-
ceedings, vol. 108. no. 8. August 2020. pp. 1283-1302.

S. Kim, S. Shah and J. Hasler, “Calibration of floating-gate SoC
FPAA system,” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 9, pp. 2649-2657, Sept. 2017, doi:
10.1109/TVLSIL.2017.2710020.

Rong Long Wang, Zheng Tang, Qi Ping Cao, A parallel algorithm for
maximum cut problem using gradient ascent learning of Hopfield neural
networks, IEEEJ Transactions on Electronics, Information and Systems,
2002, Volume 122, Issue 11, Pages 1986-1994

L. yun Wu, X. sun Zhang, and J. liang Zhang, “Application of discrete
hopfield-type neural network for max-cut problems,” 2001

